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Abstract

We have developed a time-dependent simulation model to estimate in-room concentrations of 

multiple contaminants [ammonia (NH3), carbon dioxide (CO2), carbon monoxide (CO) and dust] 

as a function of increased ventilation with filtered recirculation for swine farrowing facilities. 

Energy and mass balance equations were used to simulate the indoor air quality (IAQ) and 

operational cost for a variety of ventilation conditions over a 3-month winter period for a facility 

located in the Midwest U.S., using simplified and real-time production parameters, comparing 

results to field data. A revised model was improved by minimizing the sum of squared errors 

(SSE) between modeled and measured NH3 and CO2. After optimizing NH3 and CO2, other IAQ 

results from the simulation were compared to field measurements using linear regression. For 

NH3, the coefficient of determination (R2) for simulation results and field measurements improved 

from 0.02 with the original model to 0.37 with the new model. For CO2, the R2 for simulation 

results and field measurements was 0.49 with the new model. When the makeup air was matched 

to hallway air CO2 concentrations (1,500 ppm), simulation results showed the smallest SSE. With 

the new model, the R2 for other contaminants were 0.34 for inhalable dust, 0.36 for respirable 

dust, and 0.26 for CO. Operation of the air cleaner decreased inhalable dust by 35% and respirable 

dust concentrations by 33%, while having no effect on NH3, CO2, in agreement with field data, 

and increasing operational cost by $860 (58%) for the three-month period.
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1. Introduction

Modern swine barns are generally enclosed structures producing a high density of swine. 

Feed, swine, and swine manure contribute to elevated concentrations of hazardous airborne 

dust and gases in these structures. Swine barn dust suspended in the air is composed of feed, 

feces, mold, pollen grains, insect parts, and mineral ash (Donham et al., 1986). Various 

gases, including ammonia (NH3), methane (CH4), and hydrogen sulfide (H2S), are released 
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from the digestion of swine manure stored in the pit below the floor. Carbon dioxide (CO2) 

is generated by the respiration of swine (Donham, 1988; Chang et al., 2001) and can be 

generated from in-room heaters. Inhalation of these dusts and gases have been associated 

with adverse health outcomes in swine workers (Donham et al., 1986; Donhamet al., 1989; 

Larsson et al., 1994; Donham et al., 1995; Iversen et al., 2000; Kirkhorn and Garry, 2000; 

Donham et al., 2002; Charavaryamath et al., 2005; Hong et al., 2012) and may also depress 

the health status of swine (Stombaugh et al., 1969; Drummond et al., 1980; Donham, 1991; 

Diekman et al., 1993; Pedersen et al., 2000). Recommendation maximum concentration of 

total dust is 2.4 mg m−3 for workers (Donham et al., 1989) and 3.7 mg m−3 for swine 

(Donham, 1991). For both workers and swine, the recommended maximum concentrations 

of respirable dust particles and CO2 are 0.23 mg m−3 and 1,540 ppm, respectively (Donham 

et al., 1989). The recommended maximum concentration of NH3 is 7 ppm for workers 

(Donham et al., 1989) and 11 ppm for swine (Donham et al., 1991).

Mechanical ventilation through pit fans and radial fans at one end of the room is commonly 

used to maintain temperatures slightly above ambient temperature during the summer and 

maintain low gas and dust levels by removing these impurities from the room during the 

winter. Room or pit air is mechanically exhausted, which pulls clean outside air to flow into 

the barn. In upper Midwest facilities during winter, however, room exhaust fans are typically 

unused since replacement air must be heated, resulting in increased heating cost (Peters et 

al., 2012). Lower ventilation rates lead to higher dust concentrations in winter compared to 

summer (O’Shaughnessy et al., 2010; Takai et al., 1998). Most producers run pit fans in the 

winter to exhaust air above the under-floor manure pits, and Reeve et al. (2013) found that 

the use of pit fans in winter reduced dust, NH3 and H2S concentrations in a farrowing 

facility, but not necessarily below concentrations recommended to protect worker health.

Numerous researchers have used computer simulations or modeling to study the effect of 

mechanical ventilation in livestock facilities on indoor air quality (IAQ) and energy 

consumption (Pedersen et al., 1998; Soldatos et al. 2005; Cortus et al., 2010b). Anthony et 

al. (2014) evaluated the effectiveness of treating and recirculating air using multiple flow 

rates, percent dilution with outside air, and contaminant control devices for a representative 

swine farrowing room using a simulation model developed by Park et al. (2013). In Anthony 

et al. (2014), indoor dust concentrations were reduced (41% for respirable and 33% for 

inhalable) with the system in operation, while gas concentrations (NH3, CO, and CO2) were 

unchanged. Their study provides an evidence that incorporating standard ventilation controls 

can serve to reduce dust concentrations without increasing concentrations of gaseous 

contaminants. In Park et al. (2013), a mass and energy balance model was developed and 

evaluated to examine the relationship between IAQ, wintertime ventilation, air pollution 

control equipment, and heating needs. Outdoor temperatures were simulated based on 

seasonal estimates, and production levels (sow and piglet counts) and manure pit volume 

were held constant. However, NH3 concentrations estimated by the model were substantially 

lower than those observed in swine farrowing rooms. Simplifications used in the original 

model included the use of a fixed NH3 generation rate based on emission data measured in 

an Iowa farrowing barn (Cortus et al., 2010a), which did not consider swine number and 

manure volume in the pit. Cortus et al. (2009) developed a more complex equation to 

estimate NH3 generation rate using temperature, total ammonia nitrogen (TAN) 
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concentration and pH to calculate the NH3 generation rate from the slurry surface. However, 

real-time measuring these variables is difficult. The simulation model of Park et al. (2013) 

may be improved by empirically incorporating room NH3 measurements into the model.

Room concentrations of CO2 estimated by the simulation model of Park et al. (2013) were 

also lower than those observed in swine farrowing room (Reeve et al., 2013). In Park et al. 

(2013), the CO2 concentration for makeup (outdoor) air into the room used as input value of 

400 ppm, typical of ambient concentrations. However, CO2 concentration in rooms 

adjoining the simulated farrowing room, particularly the adjoining hallway that separates the 

study room and two other production areas (farrowing, nursery) may contribute substantially 

to makeup air into the test room. Therefore, an examination of appropriate makeup CO2 

concentration is required to improve the input value in the simulation model.

Room concentration measurements from field testing of a farrowing barn while deploying 

the optimized ventilation system are available to allow validation of the simulation model 

(Anthony et al., 2014). Outdoor temperatures, pit wall temperatures, and barn occupancy 

data were collected with room contaminant concentration data, providing data to validate the 

simulation model estimates. Understanding whether the time-dependent production factors 

or simplified seasonal temperature and production capacity numbers are sufficient to 

generate realistic concentration estimates in the barn over a winter can be examined using 

this robust data set.

The overall objective of this study was to improve the mass balance model to simulate the 

IAQ. The specific objectives were to: (1) enhance the preexisting model using an empirical 

model to simulate the NH3 emission from slurry, (2) determine the extent to which realistic 

outdoor temperature and animal population within the barn are necessary to accurately 

estimate room concentrations (NH3, CO2, CO, and dust), and (3) validate the improved 

model using the field measurements.

2. Materials and Methods

2.1. Simulated swine farrowing facility

A generalizable model was developed, but parameters were assigned to represent the 

building and operation of a specific swine farrowing facility (Mansfield Swine Education 

Center at Kirkwood Community College, Cedar Rapids, Iowa, U.S.). Previous studies 

(Reeve et al., 2013; Park et al., 2013) fully described this facility (e.g., dimensions and 

airflow rates) with key parameters provided briefly here. Four radial wall fans positioned on 

the north and south room walls were not in operation during the winter. Two pit fans 

removed air above the manure pits, exhausting air out the west side of the building (Qtp, 0.82 

m3 s−1) (Fig. 1(a)). During field testing described by Anthony et al. (2015), a single, gas-

fired heater maintained room temperatures by cycling on when room temperature dropped 

below 20.0°C and off when temperature exceeded 22.2°C. Electrical heating lamps were 

positioned in crates when piglets were present. A combination of metal and plastic slats 

separated the swine crates from the manure pits below. Two pit fans exhausted air to outside 

of the building at an airflow Qae through the slatted floor and over the manure pit located 

under the four rows of crates (19 total crates). An air cleaner (shaker dust collector; Model 
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140, United Air Specialists Inc., USA) was installed outside the building. The air cleaner 

exhausted barn air at the flowrate of 0.47 m3 s−1 (1000 ft3 min−1) with an internal fan, 

filtered the dust, and returned 100% of the treated air to the building. The air cleaner was 

operated with a standard fabric filter (14-pocket polyester sateen filter, United Air 

Specialists Inc., USA) used in Peters et al. (2015).

The simulated room volume was divided into two sections (a habitable portion and the 

manure pit), as shown in Figure 1(b) with key parameters described in Table 1. The 

habitable section was modeled as a rectangular box, dimensioned to match the test facility, 

as shown in Figure 1(a). The manure pit headspace was modeled as four equally-sized 

rectangular boxes. In the original model, total pit headspace volume was fixed at 67.5 m3 

(Park et al., 2013; Anthony et al., 2014). In the new model, total pit headspace volume 

decreased over time as the pit was filled with swine manure over the three-month period. 

The pit head space volume, Vp, was calculated as follow:

(1)

where Vp,max (= 67.5 m3) and Vp,min (= 20.8 m3) are the maximum and minimum volumes 

of pit head space, respectively. Initial Vp was set to Vp,max representing an empty pit. Ġslurry 

is the slurry generation rate per unit swine mass and mswine is the total mass of sows and 

piglets at a given time. In the original model, the swine number was fixed and was not 

coupled with pit head space volume (Park et al., 2013; Anthony et al., 2014). The new model 

used real swine occupancy of the field test site, provided in detail in supplemental materials 

as Table A2.

In the original model, outdoor temperature (To) was simulated using historical seasonal 

average data for the Cedar Rapids, Iowa, modeled as a combination of two sine waves (Park 

et al., 2013; Anthony et al., 2014) to account for within and between day temperatures. In 

contrast, in the current model, To was set to the actual temperature of Cedar Rapids, Iowa, 

U.S. from December 2013 to February 2014, the period of the field study for model 

validation (CID Airport meteorological data from NOAA’s National Climatic Data Center), 

where at least hourly temperatures were available. Model equations for temperature and 

operational cost are documented in supplementary, with electrical (0.0807 $ kWh−1) and 

natural gas (0.27 $ m−3) based on industrial pricing in Iowa (December 2013 to February 

2014).

The simulation starting time was 8:00 a.m. on December 1st and proceeded through the end 

of February (90 days). This project generated a time-dependent simulation model using 

MatLab® R2014a (version 8.3.0.532, MathWorks, Inc., U.S.) with Simulink® (version 8.3, 

MathWorks, Inc., U.S.).

2.2. Model equations and parameters for IAQ

Gas and dust concentrations in the room were simulated simultaneously with energy balance 

equations (equations A1 and A2, in supplemental materials). Under the assumption of a 
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well-mixed indoor space, the mass-balance equations for NH3, CO2, CO and dust for the 

room and pit volumes were as follows (Park et al., 2013):

Room:

(2)

Pit:

(3)

where Po is the outdoor concentration, Pr is the room concentration, and Pp is the pit 

concentration. Values for the input parameters for the contaminant generation rate for the 

room (ĠPr) and for the manure pit (ĠPp) and the removal efficiency of the air cleaner (ηP) 

are given in Table 2. In the original model, the NH3 generation rate was independent of 

swine number and manure volume in the pit: NH3 had been fixed at 1.11 mg s−1 (Park et al., 

2013). In the current model, NH3 generation rate was replaced with a dynamic value. To 

calculate the CO2 concentration, simulation values for the makeup air CO2 concentration 

were optimized and constrained between 400 ppm (ambient air quality outside) and 1,750 

ppm (concentrations in the adjoining hallway).

2.2.1. Generation rate of NH3—Generating NH3 is a process of mass transfer from the 

NH3 solution to the free atmosphere. The generation rate of NH3 can be calculated as 

follows (Aarnink and Elzing, 1998):

(4)

where k is the mass transfer coefficient, Ap is the surface area of the manure, f is the un-

ionized fraction of the total ammoniacal nitrogen (TAN) and H is the Henry constant. The 

mass transfer coefficient can be described by the following equation (Aarnink and Elzing, 

1998; Bjerg et al., 2013):

(5)

where Z is the empirically determined constant, vs is the air speed in the vicinity of the 

slurry, and Tfilm is the surface temperature of the slurry. Measuring or estimating values for 

f, TAN, and H are difficult because they change over time. Therefore, a new empirical model 

was proposed to estimate the generation rate of NH3 in the pit (ĠNH3p,) based on mswine and 

Tfilm. The ĠNH3p was calculated as follow equations:
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(6)

where ZNH3 (units: K1.4 m0.2 s−0.2) is the coefficient determined by fitting modeled 

concentration estimates to field measurements. The ZNH3 includes ventilation air speed (vs) 

and slurry conditions (f, TAN and pH). ĠNH3,EM is the NH3 emission rate per 500 kg swine, 

and a standard 1.5 mg s−1 per 500 kg swine was used (Heber et al., 2000).

2.2.2. Generation rate of CO2 and makeup air CO2 concentration—Sources of 

CO2 inside the room included gas-fired heater exhaust, swine exhalation, and digestion of 

slurry in the pit. CO2 generation rate by heaters was assumed to be zero when off and 906 

mg s−1 when on, which was calculated as (Park et al., 2013):

(7)

where Q̇heater is the natural gas consumption of the gas heater in use at the test site (= 

0.000472 m3 s−1) and ERCO2 is the CO2 emission rate from natural gas combustion (= 

1,920,000 mg m−3) (EPA, 1998). The generation rate of CO2 by swine respiration was equal 

to 0.000201 m3 h−1 W−1 (Blanes and Pedersen, 2005). Total generation rate of CO2 by 

swine respiration was calculated as:

(8)

where ρCO2 is the density of CO2 (1.84 kg m−3) and q̇swine is the total heat generation rate 

from swine (Table A1). For converting unit, 1,000,000 mg kg−1 and 3,600 s h−1 were used. 

The generation rate of CO2 from slurry in the pit was assumed as 37.5% of swine exhalation 

(Ni et al., 1999). The north, south, and west wall of simulated room face to outdoor area. 

However there is a hallway outside east wall. The hallway CO2 concentration was observed 

larger than 1,500 ppm. Makeup air pulled by pit fans may include the air from the adjoining 

hallway. Therefore, the model was run with CO2 concentrations assumed as makeup air: 400 

ppm as used in the original model (Park et al., 2013); 750 ppm to reflect published in-room 

concentrations by Chang et al. (2001); 1,250, 1,500, and 1,750 ppm to reflect field 

concentrations measured in the adjacent hallway that served as a source of some of the 

makeup air exhausted by fans in the field test site. The impact of these different CO2 input 

concentrations were assessed.

2.2.3. Generation rates of CO and dust—Generation rates of CO and dust used in the 

current model were the same as in the original model (Park et al., 2013). However, inputs for 

the swine number and outdoor temperature were changed to match field conditions over the 

2013–14 field study period. CO was generated by gas-fired heaters in the room since 

combustion gases were not vented out of the room; simulation of the heater operation (on vs 
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off) was triggered by the need to maintain production temperatures in the room (20.0–

22.2°C) as a function of heat loss from outside temperature changes. When the heaters were 

turned on, the CO generation rate was 0.6 mg s−1, which was calculated using:

(9)

The CO emission rate from natural gas combustion, ERCO, used 640 mg m−3 (EPA, 1998).

The dust generation rate in the room, Ġdustr, was modeled for both inhalable dust (1–100 μm 

in diameter) and respirable dust (1 to 10 μm in diameter, with 50% cut point of 4 μm), as 

defined by the ACGIH (2016). Generation rates were calculated as follow:

(10)

where Ġmean is the overall mean dust generation rate per 500 kg swine and mswine is the 

total mass of swine in kg. The Ġmean for inhalable and respirable dust were 0.1575 and 

0.0164 mg s−1, respectively (Takai et al., 1998). To account for the fact that dust generation 

depends on feeding time, dust generation rate was assumed to increase during feeding as 

shown in Figure A1. The first and second feedings were modeled to occur at 9:00 a.m. for 

30 min and 4:00 p.m. for 30 min, respectively. Dust concentrations at the first and second 

feeding were modeled as four and two times higher than the mean daily concentration, 

respectively, based on previous field studies (O’Shaughnessy et al., 2010).

2.3. Field measurements

In our previous study (Anthony et al., 2015), experimental data were collected in the swine 

farrowing facility. Field sampling was conducted on 18 days from 13 December 2013 to 27 

February 2014. The air cleaner was off for seven (13 to 19 December; 22 to 27 January; 26 

to 27 February) and on (20 December to 21 January; 28 January to 25 February) for 11 of 

the sample days. Twenty-four hour (from 8:00 a.m. to 8 a.m.) monitoring was conducted 

throughout the study period at six fixed positions, indicated as A through F (height of 1.5 m) 

in Figure 1(a). All devices were pre- and post-calibrated in the laboratory for each sampling 

event. IAQ concentration data included NH3, CO, CO2, and dust (inhalable and respirable). 

NH3 and CO were measured by VRae (Rae Systems, USA). CO2 was measured by ToxiRae 

(Rae Systems, USA). Inhalable dust was sampled by IOM sampler (225-70A, SKC, USA) at 

2 L min−1 with 25 mm polyvinyl chloride (PVC) filters (5 μm pore, 25 mm, SKC, USA), 

and respirable dust was sampled using a cyclone (GK2.69, BGI, USA) with PVC filters (5 

μm pore, 37 mm, SKC, USA) at a sampling flow rate of 4.2 L min−1. A micro-balance 

(MT5, Mettler-Toledo, USA) was used to pre- and post-weigh the PVC filters to obtain room 

dust concentrations. Data averaged over all six positions and 24 hours were used to validate 

simulation model.
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2.4. Simulation scenarios and data analysis

Park et al. (2013) previously reported the sensitivity between inputs and outputs using a 

simulation model for various conditions of outdoor temperature, wall insulation, pit-air-

exchange ratio, pit fans, recirculation ratio, and filtration efficiency. Pit-air-exchange ratio 

(rae), To, wall insulation (Urw), and recirculation ratio (rr) affected heater operational cost. 

Outdoor temperature (To) and rr were more sensitive to heater operation than Urw and rae. 

The pit-air-exchange ratio (rae) and rr affected room NH3, CO and CO2 concentrations, 

although NH3 was the most sensitive to the rae because the only NH3 source was in the pit. 

However, CO and CO2 concentration were more sensitive to the rr than the rae since 

significant CO and CO2 sources were in the room and not only the manure pit. Additional 

tests for sensitivity were not conducted because they are unchanged with the same mass 

balance equation used in both models. Constant values for rae (0.1) and rr (1) were used, 

based on this previous analysis.

Simulations were performed for the ventilation with pit fans and recirculation with a dust 

filtration system. Simulation parameters are given in Tables 1 and 2. The operation condition 

of air cleaner in the model was represented one in field test (in Table A3). Results from 

simulations were compared to field measurements. Linear regression was used to identify 

slope and intercept between calculated and field measured data. The coefficients of 

determination (R2) were calculated using Excel 2010 (Microsoft, USA).

Simulations were performed to optimize NH3 and CO2 modeling first. To improve the NH3 

model with empirical generation rate, simulations were performed preferentially with five 

values (15,000, 20,000, 21,000, 21,500 and 25,000) for ZNH3. Additional simulations were 

performed with three replacement air CO2 values (400, 750, 1250, 1500 and 1750 ppm) to 

find an appropriate value for CO2 concentration in makeup air. The simulation with the 

minimum sum of squared error (SSE) was used to identify the optimum NH3 generation rate 

factor and makeup air CO2 concentration. The SSE was calculated using NH3 and CO2 

concentrations from simulation (Ps) and measurement (Pm) as follows:

(11)

The values for ZNH3 and makeup CO2 concentration which showed small SSE were chosen 

for further simulations.

Once the model was optimized to minimize the SSE for NH3 and CO2, three time-dependent 

conditions were also assumed for the operation of the air cleaner. First, the air cleaner was 

modeled in the “off” condition for the entire winter, then the system was simulated with the 

ventilation system “on”. Finally, the air cleaner was represented on-off operation cycle in 

field test for the entire winter. This allowed an assessment of operating cost and air quality 

differences between using the air cleaner or not. For these simulations, real swine occupancy 

and real outdoor temperature were used. All other parameters were fixed as shown in Tables 

1 and A1.
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3. Results and discussion

3.1. Improving simulation models for NH3 and CO2

3.1.1. Optimization for NH3 with ZNH3—Room NH3 concentrations from the original 

model (Park et al., 2013), the new model and field measurement are shown in Figure 2(a). In 

the original model of Park et al. (2013), the NH3 concentration was 0.17 ppm and did not 

change because rae (= 0.1), pit fan operation, and rr (= 1) of the air cleaner were fixed. The 

resulting R2 was 0.02, indicating that estimates of NH3 made with the original model 

reflected reality poorly. The linear regression between measured and new model simulated 

NH3 concentration had a modest R2 (= 0.37), which is, however, substantially improved over 

the original model (Table 3). The difference of ZNH3 did not change R2. The improvement is 

attributed to difference of ZNH3 affected NH3 concentration only. When the ZNH3 was 

15,000, NH3 concentrations from the new model ranged from 0.03 to 10.59 ppm. When the 

ZNH3 increased to 25,000, NH3 concentrations ranged from 0.06 to 17.65 ppm. When the 

ZNH3 was 21,000, SSE was 438, which was smaller than 601 at ZNH3 = 15,000 or 524 at 

ZNH3 = 25,000. The value of ZNH3 was fixed to 21,000 for further simulations.

With the ZNH3 fixed at 21,000, the 24-hour averaged NH3 concentration from the 

simulations ranged from 0.05 to 15 ppm, while field NH3 concentrations ranged from 0.07 

to 28 ppm (Table A4). Anthony et al. (2015) reported that both the number of sows and To 

were significant factors to estimate 24-hour NH3 concentrations. When the swine number 

was zero at −13.4°C (December 31), the simulated and measured NH3 concentration were 

0.05 ppm and 0.07 ppm, respectively. However, when the sow number was 17 at −13.0°C 

(26 February), the simulated and measured NH3 concentration increased to 13.44 ppm and 

7.25 ppm, respectively. Outdoor temperature could affect Tg since the pit wall is an exposed 

structure above the ground. However, Tg used in Eq. 6 was assumed to be a fixed value. 

Outdoor temperature might be considered in ZNH3 instead of Tg. If measuring and 

simulating time-dependent Tg are available, simulation can be improved.

3.1.2. Optimization for CO2 with makeup air CO2 concentration—Estimates of 

CO2 concentrations from simulations for each formulation of makeup CO2 concentrations 

are compared to field measurement in Figure 2(b). Room CO2 concentrations were 

underestimated when the makeup air CO2 was assumed to be 400 and 750 ppm. When 1,500 

ppm was used as the assumed makeup air CO2, the trend line (dot line) crossed 1:1 line 

(grey line). The CO2 concentration in the hallway adjacent to the farrowing room in the field 

studies ranged from 1,010 to 3,330 ppm (mean 2,140 ppm), indicating that if makeup air 

into the farrowing room came from the hallway. It would be closer to 1,500 ppm that was 

simulated. When the makeup air CO2 concentration was 1,500 ppm, SSE was 1.1×106. 

When the outdoor concentration simulations used 1,750 or 450 ppm, SSE was increased 2.5 

and 18 times, respectively. The makeup air CO2 concentration was set to 1,500 ppm for 

further simulations.

Estimates of farrowing room CO2 concentrations ranged from 2,103 to 2,755 ppm (using 

makeup air CO2 = 1,500 ppm, Table A4). Room CO2 concentrations exceeded comfort 

levels established by ASHRAE 62-1999 (1000 ppm) and were generally higher than industry 

recommendations (1,540 ppm) (Donham et al., 1989). Anthony et al. (2015) reported that 
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piglet number and To are significant factor for estimations of room CO2 concentration. 

Similar to their results, simulated CO2 concentrations increased when the To decreased or 

swine number increased. Room CO2 concentration was highest during the coldest day 

because the heater, which produces CO2, must operate more frequently and for a longer time 

to maintain acceptable room air temperatures. The swine number is the other important 

factor for CO2 simulation: when the swine number was zero, as it was on 31 December in 

the field study, the room CO2 concentration was the lowest even though To was colder than 

other days. The presumption that makeup air entering into a farrowing room is independent 

of concentrations throughout the rest of the building is perhaps a poor assumption as it was 

in the current work.

3.1.3. Room concentrations of CO and dust—Simulated room concentrations of CO 

and dust, along with comparative field measure results, are illustrated in Figures 2(c–e) (date 

given in on-line supplemental Table A4). As shown in Figure 2(c), CO concentration was 

underestimated in the model, ranging from only 0.25 to 0.31 ppm, while the field measured 

concentrations ranged from 0.94 to 3.29 ppm. One reason could be the detection limit of the 

field instrument. The nominal range of the CO sensor was 0–500 ppm with a resolution of 1 

ppm. The measured CO concentrations were close to the lower detection limit of the sensor.

The linear regression between measured and simulated inhalable and respirable dust 

concentration had a modest R2 (0.34 and 0.40, respectively). In simulated and field 

measured results, both inhalable and respirable dusts were decreased when the air cleaner 

was operated. Compared to days when the air cleaner was not in operation and when field 

measurements were available, inhalable dust concentrations decreased by 32% in simulated 

results and 31% in field measured results with the air cleaner on. Similarly, respirable dust 

concentration decreased by 31% in simulated results and 41% in field measured results. 

Swine number also affected dust concentration since dust generation rate was based on total 

mass of swine. Maximum values of dust concentration from the model and field 

measurement occurred on 26 February, when there were large numbers of swine without the 

air cleaner on.

3.2. Air cleaner operation

Simulations with the condition of “air cleaner off” for the entire winter and “air cleaner on” 

during the entire winter were conducted and the results are documented in Table 4. The 

on/off cycle for the field testing data was required to examine the air cleaner performance as 

part of other research. However a producer will likely run such an air cleaning system for an 

entire season, permanently ‘on’, or will not have an air cleaning system, which is equivalent 

to the “off” condition. The air cleaner operation only reduced dust concentrations, by design, 

because this air cleaner does not remove other contaminant gases (NH3 and CO2). When the 

air cleaner was not operated during the winter season, the inhalable and respirable dust 

concentrations had three-month mean averages of 0.97 and 0.10 mg m−3, respectively. When 

the air cleaner was running the entire winter, simulated 3-month mean inhalable and 

respirable dust concentrations decreased by 35% and 30%, respectively. The room dust 

concentration decreased linearly with increasing filtration efficiency (Park et al., 2013). 
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Inhalable dust was removed more than respirable dust because the air cleaner collection 

efficiency was 95% for inhalable dust and 85% for respirable dust.

Three-month operational costs (electrical and heating) are also given in Table 4. When the 

air cleaner was turned off during winter, the total operational cost was $1,496. When the air 

cleaner was turned on, the total operational cost was increased by 58% to $2,359, primarily 

due to additional power consumption to operate the air cleaner’s fan.

4. Limitation and recommendation

One limitation of this study is that the simulation was conducted for only one configuration 

of a farrowing room. Simulation with ZNH3 of 21,000 and makeup air CO2 concentration of 

1,500 ppm showed best results for our barn designed. The ZNH3 covers various factors such 

as ventilation and slurry properties. These values may be different for other swine barns. 

Differences also exist between this simulated room and high production facility rooms, 

including room dimensions, crate layout, and pit volume (total and headspace above 

manure). In addition, other production facilities may house more swine per square foot than 

this study location and have larger piglet production targets (e.g., 11 piglets per sow), which 

would yield higher generation rates for multiple contaminants. These differences can affect 

ZNH3 and other parameters in the current model. For buildings with vented heaters or with 

lower CO2 contamination in makeup air, results may differ, but the simulation model was set 

up to account for these differences. Further validation is needed for different barn designs 

and production densities to evaluate the robustness of the model generated and validated 

here.

The model could be used to optimize ventilation systems for livestock facilities to provide 

good air quality at the lowest cost even though the model has limitations. The simulation 

model provides a useful tool for examining the costs and benefits to installing common 

ventilation technology to CAFO and, ultimately, making sound management decisions.

5. Conclusion

We improved our original mass and energy balance model to improve room NH3 and CO2 

concentrations, matching the test conditions in a field study of a swine farrowing barn. An 

empirical model was used to improve NH3 simulation, with a substantial but imperfect 

increase in agreement between simulation and field measurements (R2 improved from 0.02 

to 0.37 with new formulation). To improve CO2 concentration estimates, higher 

concentrations in makeup air were required, which was justified by assuming that makeup 

air into the farrowing room came from other rooms in the building, verified by field data. 

After optimization for NH3 and CO2, air cleaner operation was evaluated. The air cleaner 

operation only changed dust concentration and does not remove NH3 nor CO2. While the 

operational cost increased by $863 over three months due to air cleaner operation, the 

concentrations of inhalable and respirable dusts were decreased by 35% and 33%, 

respectively. The new model was able to simulate a variety of conditions, making it a 

potential tool for future simulations of IAQ and operational cost in swine farrowing rooms.
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Nomenclature

Ap surface area of manure, m2

Apw overlap area of pit and wall, m2

Arf overlap area of room and floor, m2

Arw overlap area of room and wall, m2

cp specific heat at constant pressure of air, J kg−1 K−1

ERCO CO emission rate from natural gas combustion, mg m−3

ERCO2 CO2 emission rate from natural gas combustion, mg m−3

f un-ionized fraction of the total ammoniacal nitrogen 

(TAN), dimensionless

ĠCOr generation rate of CO by heater, mg s−1

ĠCO2r,heater generation rate of CO2 by heater, mg s−1

ĠCO2r,swine generation rate of CO2 by swine, mg s−1

Ġdustr dust generation rate in the room, mg s−1

Ġmean overall mean dust generation rate per 500 kg swine, mg s−1

ĠNH3 generation rate of NH3, mol s−1

ĠNH3,EM generation rate of NH3 per 500 kg swine, mg s−1

ĠNH3p generation rate of NH3 in the pit, mg s−1

ĠPp contaminant generation rate for pit, mg s−1

ĠPr contaminant generation rate for room, mg s−1

Ġslurry slurry generation rate, m3 kg−1 s−1

H Henry’s constant, dimensionless

k mass transfer coefficient, m s−1

mpiglet mass of one piglet, kg

msow mass of one sow, kg

mswine total mass of swine, kg

npiglet piglet number, dimensionless
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nsow sow number, dimensionless

Pelect electricity cost, $ kWh−1

Pgas natural gas cost, $ m−3

Pm measured concentration of NH3 or CO2, ppm

Po outdoor concentration of contaminant, ppm or mg m−3

Pp pit concentration of contaminant, ppm or mg m−3

Pr room concentration of contaminant, ppm or mg m−3

Ps simulated concentration of NH3 or CO2, ppm

Qac total flow rate of air cleaner, m3 s−1

Qae airflow rate of pit-air-exchange, m3 s−1

Qtp total airflow rate of two pit fans, m3 s−1

Q̇heater natural gas consumption of one gas heater, m3 s−1

q ̇ac power consumption of air cleaner, W

q̇gen total heat generation rate in the room, W

q̇heater heat generation rate from one gas heater, W

q̇lamp total heat generation rate from 20 lamps, W

q̇piglet heat generation rate from one piglet, W

q̇sow heat generation rate from onw sow, W

q̇swine total heat generation rate from swine, W

q̇tp total power consumption of two pit fans, W

rae pi-air-exchange ratio, dimensionless

rr recirculation ratio, dimensionless

Sheater switch function of heater, dimensionless

Tf floor temperature, K

Tfilm manure film temperature, K

Tg pit wall temperature, K

To outdoor temperature, K

Tp pit headspace temperature, K

Tr room temperature, K
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TAN total ammoniacal nitrogen, mol m−3

TC total operational cost, $

Upw heat transfer coefficient of pit and ground, W m−2 K−1

Urw heat transfer coefficient between room and wall, W m−2 

K−1

Urf heat transfer coefficient of floor and room, W m−2 K−1

Vp pit headspace volume, m3

Vp,max maximum volume of pit head space, m3

Vp,min minimum volume of pit head space, m3

Vr room volume, m3

vs air speed in the vicinity of the slurry, m s−1

Z empirically determined constant

ZNH3 coefficient determined by fitting modeled concentration 

estimates to field measurements, K1.4 m0.2 s−0.2

ηP removal efficiency of the air cleaner, dimensionless

ρa air density, kg m−3

ρCO2 density of CO2, kg m−3
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Appendix

1. Model equations and parameters for temperature and operational cost

Equations (A1) and (A2) describe the energy balances for the room volume and the pit 

volume (Park et al., 2013).

Room:
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(A1)

Pit:

(A2)

In our previous model, outdoor temperature (To) was simulated using historical seasonal 

average data for the Cedar Rapids, Iowa, modeled as a combination of two sine waves (Park 

et al., 2013; Anthony et al., 2014) to account for within and between day temperatures. 

However, for the current model, To was set to the actual temperature of Cedar Rapids, Iowa, 

U.S. from December 2013 to February 2014, the period of the field study for model 

validation (CID Airport meteorological data from NOAA’s National Climatic Data Center).

The total operational cost was computed using Equation A3, which included continuous 

operation of heat lamps, the cost of running the heater to maintain temperatures within the 

optimum production range, and the cost of running contaminant control equipment during 

each test case using power requirements from device manufacturers (Park et al., 2013):

(A3)

where Pelect is the electricity cost, Pgas is the natural gas cost, q̇tp and q̇ac are power 

consumption of pit fans and air cleaner, respectively. The switch function of heater operation 

(Sheater) was computed by the model as 0 (off) or 1 (on) at any moment in time as 

determined by the need for the heater to activate to warm the room, based on computed 

room temperatures. Tables 1 and A1 detail each parameter used in these equations.

Table A1

Input parameters for energy and cost equations.

Parameter Value Note

Air density (ρa) 1.2041 kg m−3 Assumed dry air at 20.0°C and 101.325 kPa
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Parameter Value Note

Specific heat at constant pressure of air (Cp) 1,006.1 J kg−1 K−1 Assumed dry air at 20.0°C and 101.325 kPa

Outdoor temperature (To) - Temperature data measured at the Eastern 
Iowa Airport during Dec 2013 to Feb 2014

Room temperature (Tr) - Computed in Equation 2; initial value = 293K

Pit headspace temperature (Tp) - Computed in Equation 2; initial value = 293K

Pit wall temperature (Tg) and floor temperature 
(Tf)

290K (17°C) Assumed Tg = Tf; Field measurement data

Manure film temperature (Tfilm) - = (Tg + Tp) / 2

Heat generation rate from 1 piglet (q ̇piglet) 24.5 W = mpiglet × (4.3 × mpiglet
0.15); Brown-Brandl et 

al. (2004)

Heat generation rate from 1 sow (q̇sow) 372.6 W = msow × (14.11 × msow
−0.38); Brown-Brandl et 

al. (2004)

Total heat generation rate from swine (q̇swine) - = npiglet × q̇piglet + nsow × qṡow

Total heat generation rate from 20 lamps (q̇lamp) 2,500 W = 20 × 125 W; Manufacturer

Heat generation rate from 1 gas heater (q̇heater) 17,585 W = 60,000 BTU h−1; Manufacturer; On: Tr ≤ 
20.0°C; Off: Tr ≥ 22.2°C

Total heat generation rate in the room (q̇gen) - = q̇heater + q̇swine + q̇lamp

Heat transfer coefficient between room and wall 
(Urw)

0.286 W m−2 K−1 Zhang et al., 1993; U-value of ceiling was 
assumed to be the same as Urw.

Heat transfer coefficient of floor and room (Urf) 0.568 W m−2 K−1 Zhang and Barber (1993)

Heat transfer coefficient of pit and ground (Upw) 0.568 W m−2 K−1 Assumed Urf = Upw; Zhang and Barber (1993)

Overlap area of room and wall (Arw) 238.3 m2 = lr × wr + 2 × (lr + wr) × hr

Overlap area of room and floor (Arf) 54.6 m2 = lr × wr – (4 × lp × wp)

Overlap area of pit and wall (Apw) 96.6 – 147.3 m2 = 4 × {(lp×wp) + 2 × (lp + wp) × hp}

Electricity cost (Pelect) 0.0807 $ kWh−1 Average industrial price in Iowa during Dec 
2013 to Feb 2014

Natural gas cost (Pgas) 0.27 $ m−3 Average industrial price in Iowa during Dec 
2013 to Feb 2014

Natural gas consumption of 1 gas heater 
(Q̇heater)

0.000472 m3 s−1 Manufacturer

Total power consumption of 2 pit fans (q̇tp) 690 W = 2 × 345 W; Manufacturer

Power consumption of air cleaner (q ̇ac) 4,950 W Manufacturer

Switch function of heater (Sheater) 0, 1 0 = off; 1 = on

2. Feeding function

The overall mean inhalable and respirable dust generation rates per 500-kg swine mass were 

567 and 59 mg h−1 per 500-kg, respectively (Takai et al., 1998). The mean generation rates 

of inhalable (Ġdust,i) and respirable (Ġdust,r) dust were calculated from total swine mass. To 

account for the fact that dust generation depends on feeding time, dust generation rate was 

assumed to increase during the feeding as shown in Figure A1. The first feeding was 

prescribed at 9:00 a.m. and the second feeding at 4:00 p.m.. Dust concentrations at first 

feeding and second feeding were modeled as four and two times higher than background 

concentration, respectively, based on previous research (O’Shaughnessy et al., 2010).
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Figure A3. 
Time-dependent dust generation rate

3. Input conditions and simulation results

The following tables identify the field conditions at the farrowing barn at the test site that 

was used to validate the model. These tables detail how the model was adjusted throughout 

the 90 day simulation period, to represent actual conditions at the test location. Table A2 

identifies animals housed in the room (changed over time). Table A3 identifies when the 

ventilation system was turned on and off (to assess system performance at the test location). 

Table A4 identifies room-averaged concentrations, measured in the field and modeled, over 

the testing and simulation periods.

Table A2

Swine number

Date and time Simulation time, day Simulation time, s Sow Piglet

01 Dec 2013, 8:00 h 0.00 0 0 0

10 Dec 2013, 0:00 h 8.67 748,800 11 0

13 Dec 2013, 8:00 h 12.00 1,036,800 11 64

14 Dec 2013, 8:00 h 13.00 1,123,200 11 63

16 Dec 2013, 8:00 h 15.00 1,296,000 11 64

17 Dec 2013, 8:00 h 16.00 1,382,400 11 64
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Date and time Simulation time, day Simulation time, s Sow Piglet

18 Dec 2013, 8:00 h 17.00 1,468,800 11 68

19 Dec 2013, 8:00 h 18.00 1,555,200 11 69

21 Dec 2013, 8:00 h 20.00 1,728,000 11 77

22 Dec 2013, 8:00 h 21.00 1,814,400 11 79

26 Dec 2013, 8:00 h 25.00 2,160,000 11 74

27 Dec 2013, 8:00 h 26.00 2,246,400 11 74

31 Dec 2013, 8:00 h 30.00 2,592,000 0 0

10 Jan 2014, 8:00 h 40.00 3,456,000 16 0

11 Jan 2014, 8:00 h 41.00 3,542,400 16 0

17 Jan 2014, 8:00 h 47.00 4,060,800 15 11

18 Jan 2014, 8:00 h 48.00 4,147,200 15 8

20 Jan 2014, 8:00 h 50.00 4,320,000 15 18

22 Jan 2014, 8:00 h 52.00 4,492,800 16 30

23 Jan 2014, 8:00 h 53.00 4,579,200 16 57

24 Jan 2014, 8:00 h 54.00 4,665,600 13 54

25 Jan 2014, 8:00 h 55.00 4,752,000 13 76

26 Jan 2014, 8:00 h 56.00 4,838,400 13 75

27 Jan 2014, 8:00 h 57.00 4,924,800 13 85

28 Jan 2014, 8:00 h 58.00 5,011,200 13 91

29 Jan 2014, 8:00 h 59.00 5,097,600 13 99

03 Feb 2014, 8:00 h 64.00 5,529,600 17 120

04 Feb 2014, 8:00 h 65.00 5,616,000 17 119

10 Feb 2014, 8:00 h 71.00 6,134,400 19 82

11 Feb 2014, 8:00 h 72.00 6,220,800 19 86

17 Feb 2014, 8:00 h 78.00 6,739,200 19 117

18 Feb 2014, 8:00 h 79.00 6,825,600 19 117

24 Feb 2014, 8:00 h 85.00 7,344,000 17 96

25 Feb 2014, 8:00 h 86.00 7,430,400 17 95

26 Feb 2014, 8:00 h 87.00 7,516,800 17 102

27 Feb 2014, 8:00 h 88.00 7,603,200 17 100

Table A3

Air cleaner operation

Date and time, Simulation time, day Simulation time, s On: 1 / Off: 0

01 Dec 2013, 8:00 h 0.00 0 0

21 Dec 2013, 9:00 h 20.04 1,731,600 1

22 Dec 2013, 9:00 h 21.04 1,818,000 1

26 Dec 2013, 9:00 h 25.04 2,163,600 1

27 Dec 2013, 9:00 h 26.04 2,250,000 1

31 Dec 2013, 9:00 h 30.04 2,595,600 1

01 Jan 2014, 9:00 h 31.04 2,682,000 1
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Date and time, Simulation time, day Simulation time, s On: 1 / Off: 0

11 Jan 2014, 9:00 h 41.04 3,546,000 1

12 Jan 2014, 9:00 h 42.04 3,632,400 1

17 Jan 2014, 9:00 h 47.04 4,064,400 1

18 Jan 2014, 9:00 h 48.04 4,150,800 1

20 Jan 2014, 9:00 h 50.04 4,323,600 1

21 Jan 2014, 9:00 h 51.04 4,410,000 0

28 Jan 2014, 9:00 h 58.04 5,014,800 1

29 Jan 2014, 9:00 h 59.04 5,101,200 1

03 Feb 2014, 9:00 h 64.04 5,533,200 1

04 Feb 2014, 9:00 h 65.04 5,619,600 1

10 Feb 2014, 9:00 h 71.04 6,138,000 1

11 Feb 2014, 9:00 h 72.04 6,224,400 1

17 Feb 2014, 9:00 h 78.04 6,742,800 1

18 Feb 2014, 9:00 h 79.04 6,829,200 1

24 Feb 2014, 9:00 h 85.04 7,347,600 1

25 Feb 2014, 9:00 h 86.04 7,434,000 0
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Figure 1. 
Schematic diagram of the modeled swine farrowing facility, identifying (a) dimensions and 

six sampling positions (A – F) for field measurements and (b) airflow pathways.
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Figure 2. 
Linear regression between measured and calculated results for (a) ammonia, (b) carbon 

dioxide, (c) carbon monoxide, (d) inhalable dust and (e) respirable dust. (Note solid line: 1 

on 1 line, dash line: trend line, Ps: simulated concentration and Pm: measured concentration)
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Table 1

Physical and operational parameters of the test site used as model input.

Parameter Value Note

Room volume (Vr) 304 m3 = 9.2 m × 14 m × 2.36 m

Pit headspace volume (Vp) Max: 67.5 m3

Min: 20.8 m3
= 4 × 2.44 m × 7.6 m × hP; 0.28 m ≤ hp ≤ 0.91 m

Total airflow rate of pit fans (Qtp) 0.82 m3 s−1 = 2 × 872 ft3 min−1

The airflow rate of pit-air-exchange (Qae) 0.08 m3 s−1 Assumed 10% of the total air flow rate of pit fans Cortus et al. (2010b)

Total flow rate of air cleaner (Qac) 0.47 m3 s−1 = 1000 ft3 min−1, per manufacturer

Slurry generation rate (Ġslurry), 8.38×10−10 m3 kg−1 s−1 = 1.16 ft3 AU−1 day−1; Chastain et al. (1999)

Piglet number (npiglet) 0 – 120 Field measurement (see Supplementary)

Sow number (nsow) 0 – 19 Field measurement (see Supplementary)

Mass of 1 piglet (mpiglet) 4.5 kg Assumption (10 lb.)

Mass of 1 sow (msow) 196.4 kg Assumption (433 lb.)

Total mass of swine (mswine) - = npiglet × mpiglet + nsow × msow
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Table 4

Simulation results for air cleaner operation (ZNH3 = 21,000, makeup air CO2 concentration = 1,500 ppm).

IAQ, 3-month average

Air cleaner operation

0 on
90 off

59 on
31 off*

90 on
0 off

NH3 9.00 9.00 9.00

CO2 2,475 2,475 2,475

CO 0.30 0.30 0.30

Inhalable dust 0.98 0.73 0.63

Respirable dust 0.10 0.08 0.07

Total operational cost, $ 1,496 2,062 2,359

Operational cost for air cleaner, $ 0 566 863

*
Matches field test condition
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